Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 8(18): 5029-5046, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32812957

RESUMO

Combination therapy has been proved to be an effective strategy to inhibit metastasis, however, its efficacy is always compromised by the poor delivery efficiency of drugs. In this study, multi pH-sensitive polymer-drug conjugate mixed micelles were fabricated by the self-assembly of PEOz-PLA-ace-Cur, a conjugate of curcumin (Cur) with poly(2-ethyl-2-oxazoline)-poly(d,l-lactide) (PEOz-PLA) through the linkage of the pH-cleavable acetal bond, and PEOz-PLA-imi-DOX, a conjugate of doxorubicin (DOX) with PEOz-PLA through the linkage of the pH-cleavable benzoic imine bond. The mixed conjugate micelles (PP-Cur/PP-DOX-Mix-PMs) with accurately and conveniently controlled mass ratio of the two drugs were demonstrated to have a small particle size (40-128 nm), high drug loading capacity and pH-dependent drug release behavior. Notably, PP-Cur5/PP-DOX1-Mix-PMs exhibited slower DOX release under physiological conditions compared with PEOz-PLA-imi-DOX micelles, resulting in deeply reduced side effects in vivo. Furthermore, the mixed conjugate micelles showed synergistically enhanced inhibition of MDA-MB-231 cell growth and metastasis evidenced by the results of in vitro anti-invasion, wound healing and anti-migration assessment, and in vivo bioluminescence imaging in nude mice, and significant reduction of the side effects of DOX compared with dual drug physically loaded polymeric micelles. Mechanistic studies demonstrated that the possible inhibitory mechanism of PP-Cur5/PP-DOX1-Mix-PMs on tumor metastasis could be assigned to their inhibition of the invasion, migration, intravasation and extravasation of tumor cells. In conclusion, the multi pH-sensitive polymer-drug conjugate mixed micelles with synergistically enhanced anti-tumor and anti-metastasis activity are potential candidates for safe and effective cancer combination therapy.


Assuntos
Curcumina , Micelas , Animais , Doxorrubicina , Portadores de Fármacos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Nus , Polímeros
2.
ACS Biomater Sci Eng ; 6(4): 2146-2158, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33455346

RESUMO

The intestine epithelium is considered to be the most critical obstacle for nanoparticles for oral delivery of water-insoluble and poorly absorbed drugs. Based on the specific transporters located on the apical membrane of the intestinal epithelium, the carnitine-conjugated polymeric micelles targeting to the carnitine/organic cation transporter 2 (OCTN2) were developed by combining carnitine-conjugated poly(2-ethyl-2-oxazoline)-poly(d,l-lactide) with monomethoxy poly(ethylene-glycol)-poly(d,l-lactide). The carnitine-conjugated micelles with favorable stability in gastrointestinal fluid were validated to remarkably increase the cellular internalization and transcellular transport, while these were not the cases in the presence of free carnitine. These were further confirmed by more distribution of the micelles within epithelial cells, on the apical and basolateral side of the epithelium in mice. Additionally, identification of the carnitine-conjugated micelles by OCTN2 was detected to facilitate cellular uptake of the micelles via fluorescence immunoassay. Both clathrin and caveolae/lipid rafts pathways mediated endocytosis and transcellular transport of the carnitine-conjugated micelles, implying the enrichment of endocytic and transcellular transport pathway compared with that of carnitine-unconjugated micelles. Further, the intracellular trafficking process of the carnitine-conjugated micelles was tracked under confocal laser scanning microscopy, which involved in intracellular compartments such as late endosomes, lysosomes, endoplasmic reticulum, and Golgi apparatus as well. In conclusion, the current study provided an efficient strategy to facilitate the oral absorption of water-insoluble and poorly absorbed agents using intestinal transporter-mediated polymeric micelles.


Assuntos
Carnitina , Micelas , Animais , Camundongos , Transportador 2 de Cátion Orgânico , Polímeros , Água
3.
ACS Appl Bio Mater ; 3(7): 4684-4695, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025467

RESUMO

The intestinal epithelium is considered to be a major obstacle to the gastrointestinal administration for water-insoluble drugs. To enhance the intestinal absorption of paclitaxel by improving its solubility and overcoming the intestinal epithelium barrier, transferrin-modified paclitaxel nanocrystals were prepared based on the specific transferrin receptor expressed on the apical membrane of the intestinal epithelium and examined to exhibit a mean size of around 178 nm, a rod-like morphology, a sustained release property, and an enhanced in vitro antitumor effect. The in situ intestinal perfusion study proved that the intestinal absorption of transferrin-modified paclitaxel nanocrystals was remarkably enhanced compared with that of Taxol and unmodified paclitaxel nanocrystals, which was further evidenced by the result of pharmacokinetic study. Their transcytosis pathway and intracellular trafficking track were disclosed using Caco-2 cell monolayers. The transcytosis of transferrin-modified paclitaxel nanocrystals and unmodified paclitaxel nanocrystals was principally mediated by clathrin and lipid rafts. The colocalization of both paclitaxel nanocrystals with the organelles observed under confocal microscopy suggested that the late endosomes, lysosomes, ER, and Golgi apparatus played a part in the transcellular transport of both paclitaxel nanocrystals during their transcytosis. Therefore, the designed transferrin-modified drug nanocrystals might have a great potential in the enhancement of intestinal absorption of water-insoluble drugs.

4.
Nanoscale ; 11(44): 21433-21448, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31681915

RESUMO

The intestinal epithelium is the main barrier for nanocarriers to orally deliver poorly water-soluble and absorbed agents. To further improve the transmembrane transport efficiency of polymeric micelles, intestinal oligopeptide transporter PepT1-targeted polymeric micelles were fabricated by Gly-Sar-conjugated poly(ethylene glycol)-poly(d,l-lactic acid). The functionalized polymeric micelles with about 40 nm diameter, uniform spherical morphology and favorable cytocompatibility with Caco-2 cells were demonstrated to distinctly enhance the cellular uptake and transmembrane transport of the loaded agents. The results of intestinal absorption strongly evidenced the higher accumulation of the micelles inside the epithelial cells, at the apical and basolateral sides of the epithelium within the villi in mice. Furthermore, the interaction of Gly-Sar decorated polymeric micelles with PepT1 was explored to promote the internalization of the micelles through fluorescence immunoassay, and the PepT1 level on the membrane of Caco-2 cells treated with the micelles appeared to change in a distinctly time-dependent manner. Both clathrin- and caveolae-mediated pathways were involved in the transcellular transport for undecorated polymeric micelles, while the transcellular transport pathway for Gly-Sar decorated ones was changed to be mainly mediated by clathrin and lipid rafts. The colocalization of Gly-Sar decorated micelles with the organelles observed by confocal laser scanning microscopy indicated that late endosomes, lysosomes, endoplasmic reticulum and Golgi apparatus appeared to participate in the intracellular trafficking progression of the micelles. These results suggested that PepT1-targeted polymeric micelles might have a strong potential to greatly promote the oral absorption of poorly water-soluble and absorbed agents.


Assuntos
Sistemas de Liberação de Medicamentos , Mucosa Intestinal/metabolismo , Intestinos , Micelas , Oligopeptídeos , Absorção pela Mucosa Oral , Transportador 1 de Peptídeos/metabolismo , Administração Oral , Animais , Células CACO-2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Oligopeptídeos/farmacologia
5.
ACS Appl Mater Interfaces ; 10(22): 18585-18600, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29749228

RESUMO

In an effort to prevent metastasis of breast tumor cells- at the same time of inhibiting tumor growth with less toxic side effects, honokiol (HNK) was encapsulated into pH-sensitive polymeric micelles based on the conjugate of poly(2-ethyl-2-oxazoline)-poly(d,l-lactide) (PEOz-PLA) with doxorubicin (DOX), denoted as PEOz-PLA-imi-DOX. PEOz-PLA-imi-DOX was successfully synthesized by connecting DOX to the hydrophobic end of PEOz-PLA via acid-cleavable benzoic imine linker. HNK-loaded conjugate micelles (HNK/PP-DOX-PM) with a size of 21 nm and homogeneous spherical shape exhibited high drug-loading capacity. PEOz-PLA-imi-DOX and HNK/PP-DOX-PM displayed faster release of DOX at pH 5.0 than at pH 7.4. As anticipated, PEOz-PLA-imi-DOX maintained cytotoxicity of DOX against MDA-MB-231 cells. The synergistically enhanced in vitro antitumor effect of HNK/PP-DOX-PM was confirmed by their synergetic inhibition of MDA-MB-231 cell growth. Furthermore, the efficient prevention of tumor metastasis by HNK/PP-DOX-PM was testified by in vitro anti-invasion, wound healing and antimigration assessment in MDA-MB-231 cells, and in vivo bioluminescence imaging in nude mice. The suppression of growth and metastasis of tumor cells by HNK/PP-DOX-PM was attributed to the synergistic effect of pH-triggered drug release and HNK-aroused inhibition of matrix metalloproteinases and epithelial-mesenchymal transition, respectively. In addition, HNK/PP-DOX-PM exhibited superior biosafety than physically encapsulated dual-drug micelles. Consequently, the fabricated HNK/PP-DOX-PM may have great potential for safe and effective suppression of tumor growth and metastasis.


Assuntos
Compostos de Bifenilo/química , Lignanas/química , Animais , Linhagem Celular Tumoral , Doxorrubicina , Portadores de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Nus , Micelas , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...